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1. Introduction 
 

Different species living in shared environments often rely on similar resources, leading to 

complex interspecific interactions that influence their abundance and distribution (Kavčić et 

al., 2021; Thurman et al., 2019). These interactions can involve competitive and/or predator-

prey dynamics (Berryman, 1992; Tilman, 1982), making it challenging to understand the 

factors that enable coexistence (Darmon et al., 2012), especially in anthropized 

environments where human activities can further complicate the relationships between 

species (Van Scoyoc et al., 2023). 

Competitive interactions lead to physiological and behavioural adaptations (mainly spatial 

and temporal avoidance; Kneitel & Chase, 2004; Kitchen et al., 1999), which are shaped by 

multiple factors such as resource availability, animal density and degree of overlapping 

between competing species (Kavčić et al., 2021). In addition to competitive interactions, 

sympatric species may be exposed to predation risks, which represent another crucial 

variable in determining direct and indirect behavioural adaptations (Sönnichsen et al., 2013; 

Hebblewhite, 2005). Predators’ presence can indeed alter the community structure and its 

internal dynamics because they perform active killing and therefore alter prey abundance 

(Polis & Strong, 1996). On the other hand, predators also indirectly influence the behaviour 

of prey, their activity patterns, habitat selection and distribution by working similarly as an 

environmental pressure (Hebblewhite, 2005; Schmitz et al., 1997). These non-lethal effects 

of predation can often be spatially and temporally structured, creating a heterogeneous 

"landscape of fear" (Laundré et al., 2001) that shapes animal behaviour and habitat use 

patterns (Wirsing et al., 2021; Suraci et al., 2019). The "landscape of fear" refers to the 

spatial and temporal variation in the risk of predation that prey experience in a given 

environment (Laundré et al., 2001). By modifying their responses to these risk factors, 

animals can potentially reduce their vulnerability to predation and other threats (Gaynor et 

al., 2019; Laundré et al., 2010). Species coexistence is facilitated when the shared habitat 

presents heterogeneity of resources, thus allowing sympatric species to partition in different 

spatial niches (Kavčić et al., 2021).  

In this framework, the growing human footprint is placing significant pressure on wildlife 

populations worldwide, as anthropogenic activities continue to introduce multiple stressors 

into their environments (Montgomery et al., 2020, Bonnot et al., 2013; Boyle & Samson, 

1985). In landscapes where human activities, such as farming and urbanisation, have 
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transformed the natural environment, there has been a significant increase in spatial diversity 

within habitats, leading, for example, to fragmentation of forested areas. Therefore, 

disturbances resulting from human activities pose a risk to wildlife that is equivalent to 

predation (Suraci et al., 2019; Darimont et al., 2015; Frid & Dill, 2022). Some wild animals 

modify their movements (Tucker et al., 2018), activity or feeding patterns to avoid humans 

(Gaynor et al., 2018). Conversely, other species actively seek out human-associated 

environments to acquire resources or safety and thrive in urban areas (Newsome & Van 

Eeden 2017; Lowry et al., 2013).  

The Western Alps present an ideal scenario to study the complexity of interspecific 

interactions and coexistence in a shared habitat. This ecosystem is home to several species, 

including predators, prey, and humans, which coexist in close proximity. The presence of 

multiple species of ungulates - in particular, roe deer (Capreolus capreolus), red deer 

(Cervus elaphus), - and the only large predator in the region - wolf (Canis lupus) - creates 

an intricate web of interactions and relationships that shape the landscape and influence the 

behaviour of each species. 

However, the social and economic crisis of the mid-19th century resulted in the colonisation 

by humans of many mountain areas, which were then exploited for agriculture, deforestation, 

and livestock grazing. Hence, the decline in forested areas, along with direct persecution and 

the general growth of human populations, represented the main cause of wide-spread 

population extinctions for both prey and predators (Palmegiani et al., 2013; Perco, 2011; 

Breitenmoser, 1998).  

 

Specifically, roe deer faced extinction in the 1920s (Randi, 2005) and was later reintroduced 

for hunting reasons. Likewise, the red deer was also eradicated from the area but then 

reintroduced for hunting purposes (Mattioli et al., 2001). In contrast, the wolf, which also 

faced extinction in the area, naturally recolonised the western Alps from the Apennine 

regions (Fabbri et al., 2007). 

Subsequently, in the 1960s a gradual abandonment of mountains by the human population 

favoured the general recovery of wild species numbers and distribution. The consequent 

increase in wooded areas and ecotones has improved environmental conditions for wild 

ungulates (Mori et al., 2017; Perco, 2011), thus leading to the return of predators that had 

disappeared also due to the absence of prey (Chapron et al., 2014).  
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Consequently, animals with broad ecological plasticity could expand their distribution range, 

thus encountering other mountain ungulates. The co-occurrence of red deer and roe deer, in 

the same area has been documented to negatively impact the latter (Borkowski et al., 2021; 

Richard et al., 2010). These two species show a dietary overlap that leads to resource 

competition (Torres et al., 2012), mostly due to red deer's more general feeding needs, which 

include all the plant resources roe deer relies on (Borkowski et al., 2021; Ferretti & Mori, 

2020; Richard et al., 2010).  

Among cervids, roe deer are highly selective herbivores (Freschi et al., 2017; Jong et al., 

1995). Several studies (Borkowski et al., 2021; Freschi et al., 2017; Jong et al., 1995) showed 

how roe deer’s diet is limited to few major plant species even when multiple plants are 

available. Roe deer’s selective feeding strategy consists of browsing the most nutritious and 

palatable plants first (Freschi et al., 2017). Consequently, roe deer is more likely to be found 

in areas where high-quality food resources are available, such as woods and scrublands 

(Torres et al., 2012).  

 

Moreover, roe deer are income breeders: they tend not to store fat reserves but invest them 

directly (Ferretti & Fattorini, 2021). This condition makes them particularly sensitive to 

changes in food availability (Richard et al., 2010). Accordingly, red deer’s major pressure 

on vegetation - due to its larger dimensions and numerosity - impacts on roe deer's forage 

availability (Borkowski et al., 2021), especially in winter (Richard et al., 2010). Given the 

high sensitivity of roe deer to interference (Ferretti & Mori, 2020; Torres et al., 2012), it has 

been observed that they tend to adapt by exhibiting behaviours such as temporal or spatial 

avoidance or utilising suboptimal resources, with this adaptation being typical of inferior 

species (Kavčić et al., 2021). 

 

The rich wild ungulate community of the Alps represented an interesting topic for studies on 

the impact of wolf predation (Torretta et al., 2017; Marucco et al., 2008; Gazzola et al., 

2005). The wolf predatory behaviour and dietary habits vary according to the ecological 

conditions, such as prey availability and human presence (Ferretti et al., 2019, Capitani et 

al., 2004; Ciucci et al., 1996). In areas where ungulate populations are abundant, wolves 

primarily prey on these species (Ferretti et al., 2019; Meriggi & Lovari, 1996), with cervids 

being the selected prey of wolves among wild ungulates in the Western Alps (Gazzola et al., 

2005, 2007; Marucco et al., 2008).  
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However, human presence poses a challenge for both the prey and predator coexisting in the 

Alps. In human-dominated landscapes predator conservation becomes a complex issue as 

this species generates conflicts related to predation on domestic animals and perceived 

competition with hunters (Dressel et al., 2015). The negative perception of wolves by hunters 

reflects a competitive situation, where wolves are seen as a serious threat to hunting and 

hunting dogs (Bisi et al., 2010). 

 

To address the conflict, data on species coexistence are necessary. In Italy, despite the 

ecological and hunting interest in wild ungulates, data on their abundance and distribution 

are scarce. Surveys are carried out only in areas interested by hunting, where an index of the 

population consistency is compulsory for the definition of hunting plans, or in protected 

areas where specific studies are conducted. At the national level the most comprehensive 

technical report dates back to a quadrennial document on the status of ungulates, covering 

the period from 2006-2010, conducted by the Italian Institute for Environmental Protection 

and Research (ISPRA). Roe deer reported the largest occupied territory (145,000 km2), 

followed by the red deer (54,000 km2) and chamois (42,000 km2) (ISPRA, 2013). 

 

Considering predators, wolf abundance has been precisely estimated for the first time at the 

national level in 2021 (La Morgia et al., 2022). Instead for the Alps, the wolf population size 

has been accurately estimated and monitored over time since the beginning of the 

recolonisation (Marucco et al., 2022). 

 

The overall scarcity of data on population size estimates for ungulates may be attributed to 

the challenge of conducting homogeneous surveys to collect comparable data for different 

ungulate species, mainly due to the difficulty of coordinating a standardised sampling effort. 

Traditional sampling methods, such as counting or spotlight surveys, often require 

significant efforts in personnel and technical resources. These methods also involve inherent 

biases, such as observer variability and reduced detectability in dense vegetation (Jenkins & 

Manly, 2008). 

 

In recent years, a novel sampling method that minimises the reliance on extensive human 

resources has gained increasing popularity (Rovero et al., 2013; McCallum, 2013). This 

method involves the use of camera traps (CTs), remotely activated devices that capture 

images or videos of wildlife in their natural habitats. These cameras offer an effective 

approach to studying different species by avoiding the need of conducting separate sampling 
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campaigns for each species, other than major advantages of covering large areas and 

continuously collecting data 24/7 (Caravaggi et al., 2020; Wearn & Glover-Kapfer 2019). 

Furthermore, CTs can provide data on various ecological variables, such as the timing and 

frequency of species interactions, activity patterns, and spatial distribution (Dyck et al., 

2022; Marion et al., 2022; Dorning & Harris, 2019; Rowcliffe et al., 2008; Carbone et al., 

2001). 

 

There are several methods to analyse the data obtained from CTs in ecological research. 

Some common methods include using capture-recapture models (Augustine et al., 2018; 

Royle et al., 2009), distance sampling (Harris et al., 2020; Howe et al., 2017) and occupancy 

models (Niedballa et al., 2015; Tobler et al., 2015). Capture-recapture models are useful 

when the goal is to estimate population size or density (Efford et al., 2009). This method 

requires identifying individuals from their unique markings or characteristics and estimating 

population size based on the proportion of individuals captured in successive sampling 

periods. Distance sampling involves estimating the distance between the camera and the 

animal and using this information to estimate the density of animals in the study area 

(Buckland et al., 2005). 

 

Occupancy models are increasingly being used in ecological research as they allow for the 

estimation of species occupancy probabilities by using data on the presence or absence of a 

species (without needing individual identification) at a particular site over a series of 

sampling periods (Bailey et al., 2014; MacKenzie et al., 2002, 2003, 2004). Occupancy 

models are particularly useful in CT studies as they can account for detection probabilities, 

addressing the issue of false absences, which can occur when animals are present but not 

captured on camera due to various factors, such as camera placement or timing (Burton et 

al., 2015). 

 

Moreover, occupancy data for multiple species can be considered in multi-species 

occupancy models that are particularly useful for studying species interactions in shared 

habitats when using CTs in large territories (Tobler et al., 2015). These models allow for the 

estimation of the occupancy probabilities of multiple species while accounting for the 

potential interactions among them, thus providing valuable insights into the co-occurrence 

and spatial associations of species, as well as the factors that influence these patterns (Rota 

et al., 2016; MacKenzie et al., 2004). 
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The above consideration highlights the importance of conducting a thorough analysis of 

species interactions in the anthropogenic environment of the Western Alps. Such an analysis 

can provide valuable insights into the extent to which human presence influences the spatial 

utilisation of animal communities and the role that inter-species relationships play in 

facilitating coexistence among diverse species. 

 

 

1.1 Objectives of the study 
 

This study aims to gain a deeper understanding of the co-occurrence patterns of prey and 

predator species in an Alpine valley environment through the deployment of camera traps, 

considering the complex interplay of competition, predation, and human activities. The 

investigated area is characterised by a complex ecological system, wherein the roe deer 

compete with the red deer for resources and both face predation from the now stable wolf 

population, with roe deer being the most used prey (Marucco et al., 2008; Rizzuto, 2012). 

Furthermore, the valley is home to a human population of 3,800 inhabitants that engage in 

activities such as tourism, agriculture and hunting, all of which may impact the occupancy 

of species and their interspecific relations. 

 

Specifically, the study aims to address the following three research objectives: 

 

1) Assessing the role of interspecific interactions in shaping the spatial distribution of species 

in relation to their use of habitats. This involves examining how species interactions affect 

the occurrence of prey and predator species in a given area, which is influenced not only by 

environmental factors but also by interactions within species. Specifically, I focused on the 

reciprocal interaction between roe deer and red deer, due to their direct competition for 

resources, considering effects of wolf presence, which is a common predator. Red deer are 

typically better competitors due to their generalist nature, which puts roe deer under 

significant stress since they also are the favourable prey for wolves in the area. I therefore 

directly tested these mechanisms. 

 

2) Exploring the role of human activity in shaping the spatial use of different species. This 

second objective aims to explore the impact of human activity on species detection 

probability and how this eventually modifies their occupancy. Specifically, I explored 

whether the co-occurrence of ungulates and wolves varies in areas closer to human 
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habitation, taking into account relevant theories such as the "landscape of fear" hypothesis 

(Laundré et al., 2001). This hypothesis suggests that animals may modify their behaviour in 

response to the perceived risk of predation, causing them to avoid areas where predators are 

likely to be present, even if those areas offer abundant resources or a suitable habitat 

(Laundré et al., 2010). I further investigated this phenomenon to better understand the 

potential shift of prey species towards human settlements, also known as the "human shield" 

hypothesis (Berger, 2007). 

 

3) Investigating the potential effect of the hunting season for roe deer on its competitive (i.e., 

red deer) and predatory (i.e., wolf) interactions. I considered roe deer in specific because it 

is the most frequently occurring ungulate in the study area and the only species out of the 

three for which hunting is permitted. Specifically, the study will examine the use of forest 

habitats, expecting to find a positive relation between the hunting season and roe deer's 

tendency to occupy woodlands as refuge areas. 

 

 

1.2 The LIFE WolfAlps EU project and the wolf recolonisation process 
 

This research is conducted in the framework of the LIFE WolfAlps EU (LIFE18 

NAT/IT/000972 years: 2019-2024), a conservation project funded by the European 

Commission as part of the LIFE 2018 "Nature and biodiversity" program. The project aims 

to improve the coexistence between wolves and humans in the Alps through the development 

and implementation of shared conservation actions, across Italy, France, Austria, and 

Slovenia (www.lifewolfalps.eu).  In fact, understanding the interactions among wolves, wild 

and domestic prey in their ecosystem is critical to support decision-making in managing both 

species and habitat as a whole, particularly when addressed with a population-participatory 

approach (including institutions, environmental association and herders, for instance). 

 

The LIFE WolfAlps EU Project has been developed following the expansion of wolves in 

the Alps, after the continuous human persecution, deforestation, and reduction in prey led to 

the gradual decrease of wolves until the reach of total extinction in the Italian Alps at the 

beginning of the 20th century. Nevertheless, some isolated populations survived, all located 

in the Apennines, and started to naturally recolonise the southwestern portion of the Alps 

since the early 1990s (Marucco et al., 2022; Fabbri et al., 2007). As previously mentioned, 

a process of human abandonment of rural areas and Alpine valleys favoured the 
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recolonisation of many areas by wild ungulates, including roe deer and red deer. This 

favourable event as well as the wolf’s high ecological plasticity, high dispersal (a wolf can 

travel up to 1092 km; Wabakken et al., 2007) and capability to move across unfavourable 

habitats, contributed to the recolonisation process (Cimatti et al., 2021). As a result, the 

distribution range gradually expanded to the north, until the coverage of the entire Apennines 

and Western Alps. 

 

The study area of this thesis is centred in the highest wolf pack density of the Alps (Marucco 

et al., 2022), and where the wolf settled at first in 1996 (Marucco et al., 2005). Hence, wolf 

presence in the study area has been documented for more than 30 years, and humans and 

prey had the time to adapt to such a presence. 

 

The current LIFE WolfAlps EU project is designed to encompass a number of initiatives 

targeting several intervention lines and this research falls under the area of wild prey impact 

assessment. In Europe, there is limited understanding of how predation pressure and resource 

use affect the interactions between wolves, wild and domestic prey, and human stakeholders. 

In fact, the issue of diminished prey abundance and availability, frequently ascribed to 

predators, can result in extensive conflicts between wolves and hunters (Santiago-Ávila & 

Treves, 2022; Dressel et al., 2015; Bisi et al., 2010). The overall objective of the research is 

to evaluate the impact of wolves on prey, in a human-dominated landscape, in order to 

provide recommendations for incorporating predation into hunting management strategies 

(www.lifewolfalps.eu). 
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2. Study area 
 

2.1 Site description and background 
 

 

 
Figure 1. Cuneo (CN) province, wherein green represents the parks and protected areas (light green denotes the areas 

under the Maritime Alps Protected Area Institution's jurisdiction). The two hunting districts (namely CACN5 and CACN6), 

delineated by brown lines, completely cover the two valleys that this study concentrates on: Pesio valley (blue) and Ellero 

valley (red). The precise study area where the CTs were located is delineated by the blue shape. 

 

The study area is located in the Piedmont region of the Maritime Alps in north western Italy 

(Figure 1). This region embraces the border that separates Italy from south western France 

and represents the southernmost extension of the Alpine Mountain chain. 

 

In particular, this research was conducted within the boundaries of two mountain valleys: 

the Pesio valley and the Ellero valley (named after the two main rivers that flow through), 

which are both situated within the province of Cuneo (CN) and fall under the jurisdiction of 

the Maritime Alps Protected Area Institution. The Institution is responsible for the 

management of two natural parks (Maritime Alps Natural Park and Marguareis Natural Park) 

and eight natural reserves since January 1st, 2016. The two valleys cover a total area of 

approximately 208 km2, with Marguareis Natural Park occupying 58 km2, which 

corresponds to 74% of the park’s total area. The area encompasses a variety of environments 

from lowlands to mountains, ranging from 750 m to 2,651 m (Marguareis Peak). 
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Administratively, the Pesio valley includes the municipalities of Chiusa Pesio (3,783 

inhabitants), Peveragno (5,496 inhabitants), Pianfei (2,200 inhabitants), and Briga Alta (48 

inhabitants), while the Ellero valley encompasses Roccaforte Mondovì (2,127 inhabitants) 

and Villanova Mondovì (5,838 inhabitants). 

 

The area is also included into two hunting districts: Alpine District Cuneo 5 (CACN 5) and 

Alpine District Cuneo 6 (CACN 6). 

 

 

2.1.1 Flora and fauna 
 

The geological configuration of the area and its proximity to the sea contribute to the creation 

of a climate that allows the proliferations of an exceptional variety of plant species. In the 

valley, the historical forest management by the monks of the Certosa di Pesio monastery (a 

religious complex founded in 1173) favoured the development and maintenance of 

woodlands. The dominant vegetation consists of chestnut groves (Castanea sativa), mixed 

broadleaf forests and oak forests (Quercus petraea). At slightly higher altitudes, above 900 

m, beech forests (Fagus sylvatica) develop, which have been utilised for centuries as a source 

of firewood and their spread at lower altitudes was precluded due to chestnut cultivation. As 

the elevation increases, coniferous forests become more prevalent, with the white fir (Abies 

alba) being dominant in the Pesio valley. 

 

Beyond the forest limit at higher altitudes, subalpine meadows and pastures are the 

predominant landscape. Alpine pastures are largely artificial, created to increase the amount 

of feed available for livestock, that exploit the valleys during the summer. Today, the 

advancement of rhododendrons (Rhododendron ferrugineum) and alders (Alnus viridis) is 

often observed at the expense of forests and shrublands. The habitat type is represented in 

Figure 2, with categories derived from the Land Cover Project of Piedmont Region (Regione 

Piemonte, 2021), also used for later calculations in this study. 
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Figure 2. Habitat type classification of the study area, Pesio and Ellero valleys. The Marguareis park is highlighted in 

yellow. The category "Forest" includes mixed, deciduous and coniferous trees.  

 

The area also supports a diverse array of fauna, including many species of ecological 

significance. It is home to several species of ungulates - including roe deer (Capreolus 

capreolus) and red deer (Cervus elaphus) - and to a large carnivore species: the wolf (Canis 

lupus), which counts 33 packs in the whole Cuneo province (Avanzinelli et al., 2022).  

 

The roe deer, known for its adaptability, shows a strong preference for ecotonal habitats that 

exhibit high diversity and rich margins. The species is commonly found in areas with dense 

shrub vegetation, where it can effectively hide, as well as in wooded areas with clearings 

and undergrowth (Canalis, 2022). As a highly selective herbivore, roe deer searches for food 

with a high nutrient concentration by browsing buds and leaf tips (Freschi et al., 2017). The 

species' home range is relatively limited in comparison to other ungulates, ranging from 0.13 

- 0.44 km2 (Lovari et al., 2017). 

 

The red deer, the largest ungulate in the Alps, exhibits considerable habitat plasticity, 

although it tends to favour habitats where the forest component is well-represented, with 



 12  

relatively low levels of rockiness, steepness and snow cover. As a predominantly grazing 

herbivore, the red deer is able to adjust its diet according to food availability. The size of the 

species' home range varies considerably based on seasonal and food availability factors (1.13 

- 3.86 km2; Georgii & Schroder, 1983). Hunting of red deer is not permitted within the local 

hunting districts. 

 

The wolf is known to occupy a diverse range of habitats, with its optimal environment being 

large forests with minimal human disturbance. The size of wolf's home range varies 

depending on several factors, including food availability (Fuller, 1989), topography (Ciucci 

et al., 1997), wolf density (Fritts & Mech, 1981) and to some extent pack size (Peterson et 

al., 1984). The minimum territory occupied by a pack can vary between 100 and 600 km2 

(Ciucci et al., 1997; Mech & Boitani, 2003). When poor ecological conditions occur, the 

species relies on diverse food resources, such as livestock, fruit and small mammals (Meriggi 

et al., 1991). However, in favourable habitats, wolf primarily preys on wild ungulates, such 

as roe deer, red deer, wild boar, and, to a lesser extent, chamois (Canalis, 2022; Gazzola et 

al., 2007). 

 

In the complex ecosystem of the area, human activities such as agriculture, livestock farming 

and tourism, in addition to hunting, have a significant impact on wildlife and their habitats. 

The region boasts a renowned network of waymarked footpaths, including the southernmost 

portion of the GTA (Grande Traversata delle Alpi), a long-distance hiking trail that spans 

the Piedmont Alps. Additionally, a ski facility is present within the study area. 
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3 Materials and methods 
 

3.1 Field data collection 
 

3.1.1 Camera traps: a non-invasive tool for monitoring species presence 
 

Camera traps (CTs) are remotely activated devices used to capture images or videos of 

wildlife in their natural habitats. These devices consist of a camera, a motion sensor or 

infrared trigger, and a power source, such as batteries or solar panels. The motion sensor or 

infrared trigger activates the camera when an animal passes by, providing a non-invasive 

method for observing and studying wildlife. In particular, the camera is triggered when the 

passive infrared sensor detects a difference between the infrared radiation emitted by the 

animal in the trigger area and the infrared radiation of the surrounding environment (Moeller, 

2022). 

 

CTs are widely employed in various fields, including wildlife biology, ecology, 

conservation, and management. They are used to estimate and evaluate the size of animal 

populations, monitor species distribution and abundance over time (Rowcliffe et al., 2008; 

Carbone et al., 2001), track individual animals (Nipko et al., 2020; Dorning & Harris, 2019), 

and study animal behaviour and interactions (Marion et al., 2022; Palencia et al., 2019; 

Bridges et al., 2004). The data collected by CTs can thus provide valuable information for 

species identification, habitat use, and ecosystem health. 

 

A discussion on the advantages and disadvantages of employing CTs in wildlife studies is 

hereby reported to support the selection of this sampling method in the present study, and to 

provide a comprehensive overview of this research approach. 

 

The use of CTs offers several advantages over traditional methods of wildlife observation, 

such as direct observation or live trapping, representing a highly effective tool for wildlife 

surveys (Wearn & Glover-Kapfer, 2019). CTs have a low impact on wildlife, reducing the 

risk of disturbing or altering animal behaviour (Moeller et al., 2022). They are also cost-

effective, as they can cover large areas and collect data 24/7 with relatively low effort, thus 

being useful for year-round studies (Caravaggi et al., 2020). 

 

Despite their many advantages, some limitations should be noted. One of the main 

disadvantages is the high cost of purchasing and maintaining the equipment (Wearn & 
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Glover-Kapfer, 2019). Additionally, CTs can be affected by weather conditions, such as rain, 

snow, or dust, which can cause malfunctions or damage to the equipment. Another challenge 

is the potential for interference from the environmental surroundings, e.g., in forest 

environments branch or leaves may be present in abundance compared to other habitat types, 

which can trigger false activations and generate unusable data, in particular when windy 

conditions occur. 

 

One of the significant challenges of using CTs is individual identification, which involves 

using unique physical features to distinguish between individual animals in a population. In 

fact, many species lack natural markings or external features that are detectable through the 

camera and enable individual identification, such as fur colour and patterns, body size, or 

unique traits (e.g., scars).  As a result, studies that require individually recognisable animals, 

such as those using capture-mark-recapture methods, involve marking individuals when 

external features are unavailable, which can be invasive and impractical for many species 

(Green et al., 2020). However, recent methodologies are being developed to increase the 

reliability and precision of estimates that involve partially marked populations or partially 

identifiable individuals that can be classified in categories, such as sex or age (Gilbert et al., 

2021b; Augustine et al., 2018). In this regard, caution is advised when making inferences 

about the abundance of unmarked populations (Ruprecht et al., 2021; Gilbert et al., 2021b). 

 

Nonetheless, by combining the power of CT data with the flexibility of statistical models, it 

is possible to gain valuable insights into the ecology and conservation of a wide range of 

animal species, even in cases where individual identification is not possible, as in the case 

of this study. In particular, since CTs are used extensively for inventorying mammals 

(Kitamura et al., 2010; Rovero & De Luca, 2007), long-term monitoring of animal presence 

(O'Brien et al., 2010) and targeting species (Nipko et al., 2020), they can be efficiently used 

for species distribution models (Gilbert et al., 2021a), and have proven to be a powerful tool 

for understanding the distribution and ecology of wildlife species, being increasingly used 

by researchers and conservationists around the world (Delisle et al., 2021; Burton et al., 

2015).  
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3.1.2 Study design: camera traps deployment 
 

A standardised protocol was implemented to minimise variability among different cameras 

and ensure uniform detection opportunities. 

The study area, covering a total territory of approximately 136 km2, centred in the territory 

of the first wolf pack of the area, was initially divided into a grid of 60 cells of 1.5 km2 each, 

through the QGIS software (version 3.16.4 - Hannover) (Figure 3). A point was randomly 

identified inside each cell, thus developing a set of 60 random points, to denote the 

theoretical position of the cameras. This sampling design was adopted due to its potential to 

uniformly cover the sampling territory and limit the bias induced by human decisions. 

Indeed, randomisation ensures that the distribution of CTs is not biased in relation to the 

target species (Meek et al., 2014; Rowcliffe et al., 2013). Moreover, the homogeneous 

coverage is intended to ensure each habitat type and environmental characteristic to be 

adequately sampled. Ultimately, this sampling design enables the collection of suitable data 

for the study of the different target species (i.e., roedeer, redder, wolves). 

Access to the initially identified random point was sometimes difficult due to the challenging 

terrain characteristics, such as slope and steepness. To address this issue, two additional sets 

of random points were generated as alternative options. Nevertheless, the first point was 

always prioritised with a tolerance of 30 meters. 

Based on the accessibility of each cell, it was evaluated whether or not to deploy the CT 

during the study period (corresponding to the winter season). In fact, given the altitudes 

which the study area covers, some locations become inaccessible in winter due to the snow 

coverage. For this reason, three cells of the grid turned out to be inaccessible in all the 3 

random locations, thus were not included in the study. The deployment of the remaining 57 

cameras - which final locations are represented in Figure 3 - started in November 2021 with 

priority given to those located at higher altitudes. 
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Figure 3. CT locations (red dots). The grid (black) is represented in order to illustrate how the study area was divided. 

Each cell is 1.5 km2 and presents one CT in a randomly chosen location. 

 

The CTs were installed on trees following a standardised procedure. In particular, (i) the 

cameras had north-facing exposure, (ii) height from ground ranged between 130 cm and 170 

cm, (iii) the camera settings were constant. The northern orientation was chosen to prevent 

the CTs from taking blank photos due to sunlight. A minimum height of 130 cm above the 

ground was set to prevent snow from obscuring the camera's field of view, and a maximum 

height of 170 cm to prevent cameras that are too high from not capturing smaller animals. 

Finally, the cameras were set to be active day and night, the sensitivity was set to the highest 

level, the interval between shots was set to 0.1 seconds (the lowest time available) and three 

shots were taken for each triggering event. 

The models of all cameras were either Keepguard KW696 (n = 55) or IR PLUS HD 2 UV595 

(n = 2). All cameras were equipped with integrated infrared LEDs and operate completely 
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silently when triggered to minimise disturbance to wildlife. Examples of cameras positioned 

on trees are reported in Figure 4. 

 

 

      

Figure 4. Camera traps placed on trees (model Keepguard KW696). 

 

 

3.1.3 Data collection 
 

At the time of placement, environmental data were recorded to characterise the CTs' random 

point area. 

Firstly, the following was reported: 

- coordinates in WGS84 format (UTM zone 32N), 

- presence/absence of snow and, if present, the snow depth, 

- whether the camera was positioned on a road, trail, animal walkaway or off-trail, 

- distance from intersections, mountain ridges or passes (dimensional classes: 0 m, 0-10 m, 

10-50 m, >50 m) 

Once the camera was installed, a visibility index was calculated to provide an assessment of 

the visual clarity of the camera’s field of view. 

  

This index was determined using a chequered sheet (measuring about 42 cm x 60 cm) with 

black and white squares (16 in total, 8 white and 8 black), as showed in Figure 5. This 

chequered sheet was positioned at 6 points in the field of view of the camera at a distance of 

18 m (a distance corresponding to the maximum range of the sensor of the inferior quality 
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camera). During the index measurement, the visible squares were counted at three angles: 

(i) central position, (ii) maximum angle to the right and (iii) maximum angle to the left at 

the edges of the camera's field of view. For each angle, two measurements were undertaken: 

one with the chequered sheet at ground level and one at 130 cm above the ground. All visible 

squares were counted, regardless of whether they were black or white. The numbers were 

then converted in percentages so that, for example, a camera aimed at an open field reports 

a 100% visibility, whereas a CT aimed at a forest reports a lower percentage, depending on 

the trees present in the field of view. 

 

 

Figure 5. Chequered sheet used for calculations of CTs' visual clarity index. 

  

In addition, environmental characterisation data were collected within a radius of 50 and 100 

m around the CT to obtain accurate environmental information at the site. 

  

In particular, if the camera was located in a forest environment, the forest was characterised 

in terms of the typology of trees present: Deciduous, Coniferous or Mixed. The predominant 

association was also indicated (e.g., beech forest) and, if possible, the type of forest 

management (coppice or high forest). To these data, parameters were added regarding the 

average distance between trees, average foliage height and the average trunk diameter (all 

with dimensional classes that can be estimated at sight, e.g., in the case of diameter: 0-20 

cm, 20-50 cm, >50 cm). If the camera was located in an open area, this was classified as 

pasture, hay meadow, crop (and type), scrubland, shrubland or ecotone. 
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Finally, in order to quantify anthropic activities, data were collected on the presence of 

agricultural, pastoral (type of livestock, herd size, presence of dogs), or forestry activities 

(felling, deforestation or logging) in the vicinity of the camera, with an indication of the 

distance to the actual positioning point. 

 

Throughout the sampling period, the CTs were checked regularly, approximately once a 

month. During the checks, the images were downloaded from the memory card and the 

batteries were changed. In Figure 6 examples of CT pictures are shown. Furthermore, data 

were recorded for the presence of human activity at the time of each check. 

 

 a) 

 b) 
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 c) 

 d) 
Figure 6. Examples of camera trap pictures. a) and b) roe deer, c) red deer, d) wolves. 

 

 

 

3.2 Picture classification and dataset 
 

Once obtained from the CTs, the images were analysed using the Timelapse Image Analyzer 

(Greenberg, 2019). The Timelapse software reads images from remote cameras and 

automatically extracts metadata (date and time), which are displayed through an interface 

where additional information can be added as needed in various formats (typing or selecting 

from a list). 

 

For this study, the following information was recorded for each image (in addition to date 

and time as already specified): 
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- camera trap number 

- temperature (°C) 

- presence/absence of snow (0/1) 

- animal species present in the photo 

- total number of individuals  

- number of new events 

- sex of the animal (when recognisable for roe deer and red deer) 

- other notable individual features (e.g., roe deer moulting or any malformations) 

 

If a photograph captured individuals from two different species, the picture was duplicated 

to ensure that data from each species could be recorded separately.  

 

Photos from all camera traps were manually processed according to a predefined procedure 

ensuring a uniform recording, and considering that 3 pictures were taken per trigger event to 

aid the event's discrimination. Photos of the same occasion have been grouped in a single 

event, defined by consecutive photos taken within the same moment and activity, close in 

time, as a single occurrence, as described in other studies (O’Brien et al., 2013; Rød-Eriksen 

et al., 2022), in order to avoid pseudo replication and guarantee independence of events. This 

approach allowed the classification of independent events in the case of repeated 

photographing of the same individual, which is particularly important to note in the case of 

ungulates (e.g., animals grazing or resting in front of the camera). For instance, the first 

image reporting an animal entering the camera's field of view was counted as one new event, 

and all subsequent images (such as when the animal grazes without leaving the field of view) 

were considered as the same event. 

 

3.3 Statistical framework 
 

3.3.1 Occupancy models: an overview 
 

Wildlife studies often aim to explore changes or differences in the proportion of sites 

occupied by a particular species (Bailey & Adams, 2005). However, any detection bias may 

result in some sites where the species is actually present being classified as unoccupied, 

leading to inaccuracies in estimates of occupancy and other related parameters (MacKenzie 

et al., 2002; 2003; 2004). This imperfect detection is a common problem in wildlife studies 

and occupancy models provide a solution to the issue, minimising the potential bias. 
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Occupancy modelling is a statistical method utilised to estimate the true occupancy of a 

species within a specific area, based on environmental variables (Bailey et al., 2014). This 

method is a specific form of enhanced species distribution model, which combines species 

occurrence or abundance data with environmental measurements by also taking into account 

imperfect detection. Occupancy models were first introduced by MacKenzie et al. (2002) 

and have since become widely used in applied ecology, conservation, and theoretical 

ecology.  

The sampling design for applying occupancy models involves multiple surveys at each 

sampling site, divided into discrete time intervals. Repeated surveys offer multiple 

opportunities to detect the true presence or absence of a species, thereby increasing the 

chances of accurately estimating its occupancy state (Bailey et al., 2014). The resulting 

matrix of detection/non-detection data consists of rows corresponding to the site of the 

surveys and columns corresponding to repeated visits, with each cell indicating the 

observation or non-observation of the species of interest at that site (Bailey & Adams, 2005). 

The non-performance of some surveys is acceptable in an occupancy modelling framework 

and considered as ‘NA’ (MacKenzie et al., 2002). 

The repeated surveys in occupancy modelling allow the probability of a species' presence 

(occupancy probability) to be separately estimated from the probability of detecting it 

(detection probability). Occupancy probability reflects the likelihood that a species is present 

at a particular site, while detection probability indicates the chance of observing the species 

given that it is present at the same location. The combination of the two information in the 

occupancy hierarchical framework allows the model to assign a real occupancy probability 

to the sampled areas labelled as unoccupied (MacKenzie et al., 2002). 

 

3.3.1.1 The issue of imperfect detection 

The main strength of occupancy models is they account for imperfect detection, which refers 

to the failure to detect the species even though it is present in the sampled area, as an 

observed absence may occur when a species was either present at the site but undetected or 

genuinely absent (MacKenzie et al., 2002). This issue can result in biased estimates of 

occupancy and abundance, leading to incorrect conclusions about the distribution and 

ecology of the species (Bailey et al., 2014). 
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The imperfect detection issue is particularly relevant when working with CTs because these 

instruments have several limitations that can affect the detectability of the species, such as 

the field of view, the triggering mechanism, and how the cameras are placed (Burton et al., 

2015). These limitations can result in missed detections. 

Indeed, there are several reasons why imperfect detection can occur in occupancy models, 

including the limitations of survey methods, the behaviour of the species, and the 

environmental conditions (Devarajan et al., 2020). For example, species that are cryptic or 

have low densities are more difficult to be detected, and environmental variables such as 

weather conditions can also affect the visibility and detectability of the species. Furthermore, 

the choice of the survey method, such as the duration and timing of surveys, can also impact 

the detectability of the species. As a result, analysing detection/non-detection data as 

presence/absence data is inadequate due to the variation in detectability (Bailey et al., 2014). 

To address the imperfect detection issue, these models operate repeated observations at each 

site, and incorporate the estimated detection probability in a specific observation model as a 

function of the site (e.g., land cover) or survey characteristics (e.g., weather conditions). 

Occupancy, in contrast, relates only to site characteristics (Abrams et al., 2021, Guillera-

Arroita et al., 2010). 

 

3.3.1.2 Assumptions of occupancy models 

Occupancy models rely on a number of key assumptions, which are critical to their accuracy 

and reliability (MacKenzie et al., 2017; Bailey et al., 2014; Bailey & Adams, 2005): 

(i) The occupancy state of a species is assumed to be "fixed" within the sampling season, 

indicating that the species remains present at occupied sites throughout the sampling season 

and therefore the population results closed with no births, deaths or emigrations and 

immigrations. 

(ii) Sites are assumed to be independent, with detection of the species at one site being 

unrelated to its detection at other sites. However, this independence assumption may be 

compromised if the sites are situated too close to one another. 

(iii) A species can only be detected if it truly occupies a site. In other words, it is assumed 

that there are no false positives. 
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(iv) Avoidance of unexplained heterogeneity in either occupancy or detectability is 

necessary. Specifically, the probability of occupancy is assumed to be uniform across all 

sites, or any deviations in occupancy can be accounted for by site-specific characteristics 

that have been quantified and incorporated into the model. Similarly, detectability is 

assumed to be constant across all sites and surveys, or any variations can be explained by 

survey or site-specific information that have been included in the model. 

 

3.3.2 Hierarchical implementation of occupancy models 

An Occupancy Model is a sophisticated version of a Logistic Regression or a Generalized 

Linear Model, and consists of two logistic regressions layered on top of each other (Doser 

et al., 2022). The first logistic regression estimates the occupancy probability as a function 

of site-level covariates that determine the presence or absence of a species at a certain 

location. In the second logistic regression, the probability of detection is modelled, which 

may vary across space and the various surveys. A model for the detection probability can 

incorporate covariance at both the site and survey levels. 

The model can be mathematically represented as follows: J represents the total number of 

sites, and j is used to index across the sites. At each site, there are Kj replicates, and k is used 

to index across the replicates. 

j = 1, ..., J (site) 

k = 1, ..., Kj (replicate) 

In the occupancy portion of the model (Formula 1), the true presence or absence of a species 

at each site J is denoted as zj. This portion of the model is based on a Bernoulli Distribution, 

a discrete distribution that only has two possible outcomes: 0 and 1. These outcomes are 

often referred to as failure (0) and success (1) and are used to describe binary events. 

 

The occupancy probability \j is modelled using a logistic regression framework, which 

allows for the inclusion of various site-level covariates (X) that are believed to influence the 

occupancy probability. The effects of these covariates are described by a vector of regression 

coefficients E. The logit transformation utilises a linear combination of the covariate 
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coefficients (which can span between rf) to convert them into probability values (ranging 

between 0 and 1). 

 

Formula 1: Occupancy (ecological) sub-model 

 

zj ~ Bernoulli (\j) 

logit (\j) = E1 + E2 � X2,j + ... + Er � Xr,j 

 

The second part of the model, referred to as the detection model (Formula 2), deals with the 

observed data denoted as y, where yj,k represents the detection or non-detection of the species 

at site j during the k replicate survey. Similar to the occupancy model, the detection model 

assumes that the data arises from a Bernoulli Distribution, but it is conditional on the species 

actually being present at the site, as indicated by zj. It is important to note that if the species 

is not present at the site, it cannot be detected, meaning that there are no false positives. 

 

The detection probability pj,k varies both at the site and survey level, and is influenced by 

covariates (V). The effects of these covariates are described by a vector of regression 

coefficients D. 

 

Formula 2: Detection (observation) sub-model 

 

yj,k ~ Bernoulli (pj,k� zj) 

logit (pj,k) = D1 + D2 � V2,j,k + ... + Dr � Vr,j,k 

This represents the fundamental single species occupancy model.  

 

The multi-species occupancy model designates a more complex extension of this framework 

and focuses on modelling the community of multiple species of interest. 

 

 

3.3.2.1 Multi-species occupancy models (MSOM): a description of the modelling 
framework 

Multi-species occupancy models (MSOM) represent an advanced analytical framework that 

integrates diverse environmental variables and interspecific correlations to accurately 
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estimate the factors that affect occupancy, while simultaneously accounting for imperfect 

detection (Rota et al., 2016). In contrast to the single-species models (SSOMs), the MSOMs 

aim to utilize information from multiple species to estimate the individual species' responses 

to environmental variables (Devarajan et al., 2020). 

A MSOM is based on the key concept of incorporating multiple layers into the model 

structure. Instead of using a single detection-non-detection matrix, each individual species 

has its own matrix, which is then represented through superimposed layers (Rota et al., 

2016). Specifically, the first layer corresponds to the first species, the second layer 

corresponds to the second species, and so on, for all species of interest within the sampled 

community. 

MSOMs share many similarities with classical SSOMs, as both are constructed from the 

encounter histories of species across multiple sites in a region during repeated visits. 

However, MSOMs offer several key advantages over SSOMs, as they can be used to 

estimate species richness at both the community and metacommunity levels (Devarajan et 

al., 2020). This is based on the fundamental concept that a community is a complex 

assemblage of species that occur at a site, while a metacommunity is a broader collection of 

such communities. To achieve this, MSOMs integrate three levels of hierarchical 

organization: (i) the metacommunity level, (ii) the community level, and (iii) the individual 

species level.  

(i) The first level is characterized by the presence or absence of each species i in the 

metacommunity through an indicator variable that is modelled with a Bernoulli distribution. 

(ii) The second level describes the occurrence of each species i at specific sites j through a 

Bernoulli distribution. 

(iii) The third level considers the detection process of individual species i at site j over K 

sampling occasions, and is modelled through a detection frequency variable (yij) and a 

detection probability pij for each sampling occasion k. Here, yij indicates the detection 

frequency and yijk is the detection/non-detection at the kth sampling occasion. 

 

yijk  ~ Binomial (K, pij zij) or yijk ~ Bernoulli (pijk zij) 
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The Bernoulli distribution and the binomial distribution are closely related but describe 

slightly different phenomena. The Bernoulli distribution describes a single experiment with 

two possible outcomes, whereas the binomial distribution describes the number of successes 

in a given number of independent and identically distributed Bernoulli experiments.   

Finally, the occupancy and detection probabilities can be modelled as a function of 

covariates in the same way as SSOMs. 

The MSOM and SSOM share similar underlying assumptions including: geographic and 

demographic closure, independence between site in regard to occupancy and detection 

probability, accuracy in species identification, ecological similarity (Devarajan et al., 2020). 

The latter refers to the assumption that species in a community are similar. 

MSOMs represent a valuable tool due to their efficiency in resource utilisation, capacity to 

incorporate biological interactions such as competition and predation, ability to utilise 

existing data, and capability to monitor entire landscapes and communities, rather than 

individual species. By facilitating monitoring of spatio-temporal changes in community and 

metacommunity size, composition and functioning, the framework enables inference at 

local, landscape and macro scales (Niedballa, 2017). 

 

3.3.2.2 MSOM selection for this study 
 

The multispecies occupancy model of Rota et al. (2016) was employed for this study, due to 

its capability to simultaneously model occupancy dynamics for multiple species. Previous 

approaches to modelling interactions between species, such as MacKenzie et al. (2004), were 

limited by the need for a “species interaction factor” (SIF). This ratio represented the 

likelihood of two species co-occurring compared to what would be expected under a 

hypothesis of independence and thus zero interaction (Richmond et al., 2010). However, 

including covariates in this model's parameterisation caused it to fail to converge when 

directly estimating the SIF. 

 

To address this issue, Richmond et al. (2010) proposed a conditional two-species occupancy 

model that incorporated covariates. However, this model assumed asymmetric interaction 

between the species (one dominant over the other). 
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Alternative methods have been developed in recent years. For instance, Steen et al. (2014) 

investigated occupancy for more than two interacting species but that was achieved by fitting 

multiple two-species models instead of a single model that accommodates interactions. 

Rota et al. (2016) proposed a generalised occupancy model that can account for two or more 

interacting species. This model avoids assuming asymmetric interactions by modelling the 

latent occupancy state as a multivariate Bernoulli variable. Furthermore, it provides 

conditions for interspecific independence without requiring additional parameters like the 

SIF. Finally, this model can successfully incorporate covariates to estimate the probability 

that two or more species occupy the same site. 

As the aim of this study is to investigate species interactions while controlling for the effects 

of environmental variables, the multivariate Bernoulli model's capability represented a 

crucial feature. This model allows for the impact of environmental variables on one species 

to vary in the presence of another species. This is achieved by comparing a model that 

assumes the probability of one species conditional on the presence of another, is also a 

function of covariates. 

The occupancy model of Rota et al. (2016) is implemented in R through the package 

unmarked (Fiske & Chandler, 2011). 

 

 

3.4 Statistical analysis: the application of the Multi-Species Occupancy Models 
(MSOM) 
 

The statistical analyses were performed on R 4.2.2, with RStudio 2022.12.0 (R Core Team, 

2022). 

In this study, each CT station represents a sampling site, and the time intervals for each 

repeated survey are grouped as one day. Diverse MSOM were fit to detection/non-detection 

data of roe deer, red deer and wolves obtained from CTs. A set of candidate models was 

applied to reflect hypotheses on the effects of interspecific interactions on occupancy and 

detection processes to avoid data dredging (Burnham & Anderson, 2002). 

 

To format the data for analysis using the unmarked package, a set of specific procedures was 

followed. First, the detection/non-detection data was formatted as a list of matrices (one for 
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each species). Next, the site-level covariates were formatted as a data frame, while the 

detection-level covariates were formatted as a list of data frames. Finally, the data was 

combined into an “unmarkedFrameOccuMulti” object, which was used in the model. 

 
 
3.4.1 Variables 
 

The sampling unit for the analysis is represented by the location point of each CT. Because 

all sites were randomly determined and could potentially be 1,5 km apart, the values used 

for the analysis were measured within a 200 m radius circular buffer surrounding the 

cameras. The buffer size ensured independence between sites and served as an index of 

habitat type integrity and connectivity (Cove et al., 2013). 

 

1. The site-level covariates (occupancy) included: 

 

(i) Measures of human disturbance: 

- average daily number of people photographed at each camera trapping site, obtained from 

CT data directly  

- distance from roads (m) 

- distance from houses (m) 

- distance from park border (m) 

 

The three distances were calculated using the QGIS software - version 3.16 Hannover 

(QGIS.org, 2020). Vector calculations were undertaken to obtain the measurements derived 

from the regional layers downloaded from the online Geoportale catalogue of Piedmont 

region. 

 

(ii) Measures of environmental variation: 

- open areas in a 200 m buffer from the camera (%) 

- forest in 200 m buffer from the camera (%) 

- terrain ruggedness index (TRI), an indicator used to describe the roughness or irregularity 

of the terrain in a specific geographical area. The index accounts for terrain ruggedness using 

a combination of information about the slope of the terrain and the change in elevation in a 

specific area (Riley et al., 1999). 
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The three percentages were calculated using the QGIS software, relying on the data obtained 

from the Land Cover Piemonte project available on the Geoportale online catalogue 

(Regione Piemonte, 2021). 

TRI was calculated through the Digital Elevation Model (DEM) of Piedmont region (scale 

1:10,000), also available on the Geoportale catalogue (Regione Piemonte, 2008). 

 

2. The detection-level covariates included: 

 

- visual clarity, obtained from measurement directly undertaken at the camera site 

- temperature, obtained from CT automatic measurements 

- camera positioning on/off a trail or animal walkaway 

- humans latent presence/absence, obtained from CT data directly  

- hunting days, obtained through open access data of the hunting calendar in the area, on the 

website of CACN5 (www.comprensorioalpinocn5.it). Hunting occurs from the beginning of 

September until the end of January every day, except Tuesday and Friday. 

 

All the variables were standardised to an average of 0 and a standard deviation of 1. The 

concept of standardisation is relevant when measuring continuous independent variables at 

very different scales (such as average number of people, ranging from 0 to 7, and distance 

from roads, ranging from 18 to 2061). The purpose of standardisation is to rescale an original 

variable to attain comparable range and/or variance (Zipkin et al., 2010). 

 

Moreover, variables were checked for any correlation with the VIF function of the package 

usdm (Naimi et al., 2014) in R. In cases where a correlation was detected between two 

variables, only one of the variables was included in the model, with a correlation threshold 

of 0.6 being applied (Dormann et al., 2013). Variables above this limit were not included in 

the same models for the same parameter. 

 

3.4.2 Set of models 
 

The primary interest of this investigation was to examine the influence of inter-specific 

interactions on the spatial behaviour of species within an anthropogenic setting. To this end, 

the analysis was divided in three parts, as described in the specific objectives (par. 1.1), 

wherein occupancy or detection variables were selected based on prior published works 
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(Table 1). Table 1 provides a summary of the variables included in the candidate models and 

their expected effects on the respective species. 

 

 
Table 1. Description and expected effect of covariates used to describe the occupancy dynamics of roe deer (Ro), red deer 

(Re), and wolf (W) or their interactions. If there's only one symbol (+ or -) it is referred to all species. Parameters: \ refers 

to occupancy, p to detection. 

 
 
The modelling framework is divided in three sections, that follow the three objectives of the 

study, as described in section 1.1. The first objective of the study, which comprises a set of 

3 models, aims to evaluate the extent to which interactions play a role in shaping inter-

specific communities (ch. 3.4.2.1). The second objective, also comprising three models, aims 

to explore the impact of human activity on species detection probability and how this 

eventually modifies the occupancy effect (ch. 3.4.2.2). Lastly, the third objective of the study 

introduces hunting to explore the variation of competition and predation issues within a focal 

species, the roe deer - the most frequent in the study area and only species for which hunting 

is permitted among the three (ch. 3.4.2.3). 

 

3.4.2.1 Species interactions 
 

The aim of the first set of models (M1, M2, M3) is to examine the role of inter-specific 

interactions in shaping the spatial distribution of species in relation to their use of habitats. 

Covariate Measure Abbreviation Parameter Description Expected 
effect Reference 

Visual clarity % vs p Index that assesses the visual 
clarity of the CT's field of view + Rota et al., 2016 

Temperature °C temp p Mean daily temperature + Meek et al., 2014 

On/off trail 1/0 trail p Whether the CT is positioned on or  
off a trail +W  Callaghan, 2002; 

Musiani et al., 1998 
Human 
presence/absence 1/0 human p Record of presence or absence of 

humans each day - Oberosler et al., 2017 

Hunting days 1/0 hunting p Record of the days in which 
hunting was active -Ro Bonnot et al., 2013; 

Benhaïem et al., 2008 

Forest cover % forest \ Percentage of deciduous, 
coniferous or mixed forest cover 

+Ro 
+Ro/Re Mori et al., 2021;  

Terrain 
ruggedness index % TRI \ Percentage of roughness or 

irregularity of the terrain - 
Wevers et al., 2021; 
Falcucci et al., 2013; 
Whittington et al., 2005 

Distance to the 
closest road m dist road \ Minimal distance between CT and 

primary/secondary/tertiary roads -Ro -Re 
Petridou et al., 2023; 
Bonnot et al., 2013; 
Coulon et al., 2008 

Distance to the 
closest house m dist house \ Minimal distance between CT and 

a habitation 
-Ro -Re 
+Ro/Re 

Henderson et al., 2022; 
Bonnot et al., 2013 

Number of people 
per day 

people/ 
day avg people \ Average number of people 

captured by a CT per day -W Whittington et al., 2005; 
Theuerkauf et al. 2003 
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Here, human pressure is modelled with variables indicating permanent disturbance, such as 

roads or houses and an index of the average number of people visiting the sites that do not 

vary within surveys. 

 

The three models are summarized in Table 2. 

 

M1, M2, M3 all assume species-specific detection probabilities as a function of the visual 

clarity of the camera (Rota et al., 2016), the temperature (Meek et al., 2014) and whether the 

camera was on or off a trail (Oberosler et al., 2017, Rota et al., 2016), as indices of the 

camera functioning. Conversely, occupancy variables vary according to the species of 

interest. 

 

 
Table 2. Specification of the detection and occupancy formulas for the 3 candidate models M1, M2, M3 aimed at examining 

the role of inter-specific interactions among roe deer, red deer and wolf.  

Model Species Detection formulas Occupancy formulas 

M1 Roe deer vs + temp + trail forest + TRI + dist roads 
 Red deer vs + temp + trail TRI + dist houses 
 Wolf vs + temp + trail TRI + avg people 

M2 Roe deer vs + temp + trail forest + TRI + dist roads 
 Red deer vs + temp + trail TRI + dist houses 
 Wolf vs + temp + trail TRI + avg people 
 Roe & Red  1 
 Roe & Wolf  1 
 Red & Wolf  1 
M3 Roe deer vs + temp + trail forest + TRI + dist roads 
 Red deer vs + temp + trail TRI + dist houses 
 Wolf vs + temp + trail TRI + avg people 
 Roe & Red  forest + dist houses 
 Roe & Wolf  TRI + dist roads 
 Red & Wolf  TRI + dist roads 

 
 

Model M1 reflects the hypothesis that all three species occur independently and that 

marginal occupancy probabilities for each species are a function of habitat type (percentage 

of forest and/or TRI; Mori et al., 2021; Wevers et al., 2021) and a distinctive human 

disturbance covariate, identified on the basis of previous research works that highlighted an 

effect. 

 

Roe deer marginal occupancy was modelled as a function of forest, TRI (one of the primary 

factors to lead habitat use in roe deer according to the findings of Wevers et al. (2021) and 
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Lone et al. (2014)), and the distance from roads, which serves as an indicator of a major 

disturbance to the species, as road accidents are the primary cause of deaths in similar 

Western Alps valleys (Gazzola et al., 2005). Red deer marginal occupancy was also 

modelled as a function of TRI and the distance from houses (Henderson et al., 2022). Finally, 

wolf marginal occupancy was modelled as a function of TRI (Dyck et al., 2022; Falcucci et 

al., 2013) and the average number of hikers, since wolves usually tend to minimise their 

probability of encountering people (Whittington et al., 2005; Theuerkauf et al., 2003). 

 

Model M2 assumes that occupancy probabilities of the single species are a function of 

habitat type and human disturbance, as defined in M1, and further incorporates the 

hypothesis of constant pairwise dependence among species (i.e., without any covariate). This 

is achieved with the addition of the MaxOrder argument in the modelling framework (here, 

MaxOrder = 2).  

 

Model M3 incorporates the hypothesis that the association between human disturbance and 

the likelihood of occupancy for individual species differs in the presence or absence of other 

species. This time, the pairwise dependence among species is not considered as constant, but 

is modelled with covariates. When modelling the probability of co-occurrence between two 

species, it can be challenging to determine which variables to use, as this represents a unique 

aspect of the MSOM used in this study that lacks clear guidance in scientific literature (Rota 

et al., 2016). The modelling for each pairwise interaction includes at least one environmental 

factor and one human disturbance factor, in order to evaluate their single or combined 

impact. 

 

The probability that roe deer and red deer occur together is modelled as a function of forest 

and distance from houses, because human settlements can create edges or boundaries in the 

landscape, which have been generally proven to offer a suitable habitat for ungulates, due to 

the supplemental feeding areas (Etter et al., 2002, Porter et al., 2004). The probability that 

both roe deer and wolves and red deer and wolves occur together is modelled as a function 

of TRI and distance from roads. The TRI is used as a proxy for terrain complexity, as all 

species are expected to more likely inhabit less rugged terrains (Wevers et al., 2021; Falcucci 

et al., 2013; Whittington et al., 2005), while roads are used as the index of human disturbance 

that could affect all species, to address the framework of the “landscape of fear” (Laundré et 

al., 2001). 
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3.4.2.2 The impact of human presence 
 
M4, M5, M6 (Table 3) reflect the same set of hypotheses regarding the occupancy process 

outlined for models M1, M2, M3 respectively but now assume that detection probability is 

also a function of the latent presence/absence of humans (i.e., varying across surveys). 

Humans are potentially competitively superior to animal species so they may alter 

detectability of interacting species when present. In particular, human disturbance was 

revealed to play a significant role in influencing the detection probability of prey and 

predator in a study by Oberosler et al. (2017). Moreover, several studies (Reimoser, 2012; 

Cederlund, 1981; Jeppesen, 1989) showed that roe deer are habitually active during the day, 

similar to humans, an important evaluation which allows for a more accurate comparison in 

this study, where temporal patterns were not included. Therefore, adding this variable is 

likely to show a negative effect of human presence on the detectability of all species. 

This set of models still includes three options as it is necessary to confirm the first hypothesis 

regarding the role of interactions in shaping the community. 

 

 
Table 3. Specification of the detection and occupancy formulas for the 3 candidate models M4, M5, M6 aimed at examining 

the role of human presence on roe deer, red deer and wolf detectability. 

Model Species Detection formulas Occupancy formulas 
M4 Roe deer vs + temp + trail + human forest + TRI + dist roads 
 Red deer vs + temp + trail + human TRI + dist houses 
 Wolf vs + temp + trail + human TRI + avg people 

M5 Roe deer vs + temp + trail + human forest + TRI + dist roads 
 Red deer vs + temp + trail + human TRI + dist houses 
 Wolf vs + temp + trail + human TRI + avg people 
 Roe & Red  1 
 Roe & Wolf  1 
 Red & Wolf  1 

M6 Roe deer vs + temp + trail + human forest + TRI + dist roads 
 Red deer vs + temp + trail TRI + dist houses 
 Wolf vs + temp + trail TRI + avg people 
 Roe & Red  forest + dist houses 
 Roe & Wolf  TRI + dist roads 
 Red & Wolf  TRI + dist roads 
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3.4.2.3 The effects of hunting  

The final objective of the study was to explore the potential effect of hunting on the target 

species, with an investigation on how competitive and predatory interactions vary during the 

hunting season. In particular, a focus applies to roe deer as it is the most widespread species 

in the study area and the only one that can be legally hunted. In order to address this issue, 

roe deer detectability was modelled in relation to hunting days, as in Bonnot et al. (2013) it 

was observed that the onset of the hunting season had an impact on roe deer's habitat use. 

Additionally, the study examined the forest habitat expecting to find a positive relation with 

roe deer marginal occupancy, since Benhaïem et al. (2008) found that roe deer's spatial 

behaviour is influenced by the perceived risk of open landscapes compared to wooded areas 

and, Bonnot et al. (2013) confirmed that during the open season, regardless of the time of 

day, roe deer tend to spend more time in woodlands.  

M7 is summarized in Table 4. 

Table 4. Specification of the detection and occupancy formulas for the model M7, aimed at examining the effects of the 

hunting season on roe deer and its result on shaping ungulates and prey-predator interactions. 

Model Species Detection formulas Occupancy formulas 
M7 Roe deer VS + temp + trail + human + hunting forest + TRI + dist roads 
 Red deer VS + trail + hunting TRI + dist houses 
 Wolf temp + trail +hunting TRI + avg people 
 Roe & Red  forest + dist houses 
 Roe & Wolf  TRI + dist roads 
 Red & Wolf  TRI + dist roads 

 

The candidate models were evaluated using the Akaike Information Criterion (AIC). The 

AIC is a widely used criterion in statistics that balances the trade-off between identifying the 

model with the best combination of variables while keeping the number of variables as little 

as possible, in accordance with the principle of parsimony (Burnham & Anderson, 2002). It 

can be defined as: 

AIC = 2δ - 2 ln(L) 

Where δ represents the number of estimated parameters in the model, and L represents the 

maximum value of the likelihood function of the model. 
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4. Results 

4.1 Descriptive analysis of the dataset 

A total of 58 CTs were deployed. Out of all the positioned cameras, 62% were positioned at 

the first random location, 28% at the second, and only 10% at the third. Data collection was 

carried out for a total of six months, from November 2021 to April 2022 and the majority of 

the cameras (80%) were positioned during the initial two months of the sampling period 

(November and December; Figure 7). Once positioned they run until the end of the study. 

Out of the total cameras, 4 were stolen during the entire sampling period. 20% of the total 

CTs are located inside the Marguareis Natural Park, where hunting is prohibited and car 

access restricted.  

 

Figure 7. Number of cameras deployed per month. 80% of the cameras were positioned during the first two months of the 

sampling period (November-December). Once positioned they run until the end of the study. 

 

One camera did not work properly due to technical issues so it was excluded from the study. 

As a result, the entire dataset consisted of 57 CT sites and 6,288 trap days. The most long 
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active camera was continuously active for 162 days and the least lasting camera was active 

for 23 days. The mean of trap days for the cameras was 112 r 38 days. 

The dataset includes a total number of 45,525 pictures, cleaned from false triggers (i.e., blank 

photos due to bad weather conditions, strong wind, over-illumination or camera's 

malfunctioning). 

Table 5 presents a summary of the total number of pictures and events per species in the 

study area, highlighting in bold the species relevant to this research. The category "Other" 

includes species with less than 1% of detections, comprising: mustelids, cats, birds, squirrels, 

hares, livestock, and unidentifiable animals (i.e., out of focus or of low quality).  

Among the species identified, the roe deer exhibited the highest frequency of pictures, 

accounting for 42% of the total, and also had the greatest number of recorded events, 

amounting to 31% of the total. Notably, there was a 13% difference in events between roe 

deer and the second most detected species, the wild boar. Humans were the third most 

commonly captured species, accounting for 16% of total photographs and 21% of total 

events. Red deer ranked fifth with 6% of photographs and 4% of events, while the wolf was 

identified as the ninth most frequent species, with a representation of 1% of total photographs 

and 1% of total events. 

Table 5. Total number of pictures and total number of events per species in the study area. The category "Other" includes 

species with <1% detections. Highlighted in grey are the species of interest for this research. 

Species Pictures Events 

Roe deer (Capreolus capreolus) 18967 (42%) 2581 (31%) 

Wild boar (Sus scrofa) 6421 (14%) 1474 (18%) 

Human (Homo sapiens) 7327 (16%) 1096 (21%) 

Fox (Vulpes vulpes) 3288 (7%) 691 (8%) 

Red deer (Cervus elaphus) 2852 (6%) 332 (4%) 

Badger (Meles meles) 2319 (5%) 462 (6%) 

Chamois (Rupicapra rupicapra) 1039 (2%) 111 (1%) 

Dog (Canis lupus familiaris) 845 (2%) 200 (2%) 

Wolf (Canis lupus) 580 (1%) 123 (1%) 

Other (<1%) 1887 (4%) 529 (6%) 

TOTAL 45525 8257 
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As far as the focus species are concerned, we obtained 2581, 1096, 332 and 123 detections 

(i.e., events) of roe deer, human, red deer and wolf, respectively, at 52, 27, 21 and 23 sites, 

respectively (Figure 8).  

   

     

Figure 8. Number of detections for each species. Roe deer (top left) is the most widespread species, with detections at 91% 
of the cameras. Humans (top right) were detected at 47% of the cameras, wolf (bottom left) at 40% and red deer (bottom 
right) at 37%.  

 
 
 
4.2 Model selection  

Overall, the model selection process provided evidence of interspecific dependence among 

the three observed species and the influence of human presence. The models compared with 

the Akaike Information Criterion (AIC) are displayed in Table 6. 



 39  

 

Table 6. AIC model ranks. ' AIC is the difference of each model's AIC. 

 
 
 
 
4.2.1 Species interactions 

The best model among the first set, M3, accounted for interspecific interactions, dependent 

on covariates. The results of the three models are presented in Table 7.  

 

Table 7. MSOMs results, evaluating: independent occurrence of the three species (M1), constant pairwise dependence 

among species (M2) and pairwise dependence modelled with covariates (M3). Statistically significant results are 

highlighted with an asterisk (*) at P < 0.05. 

  M1 M2 M3 

Species Variable Estimate SE p-value Estimate SE p-value Estimate SE p-value 
Roe 
deer Intercept p 

VS 
temp 
trail 
Intercept \ 
forest 
TRI 
dist roads 

-1.225 
0.517 
0.043 
-0.454 
5.570 
0.086 
-4.187 
1.815 

0.075 
0.059 
0.009 
0.049 
2.225 
0.816 
1.992 
1.082 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.012* 
0.916 
0.036* 
0.093 

-1.225 
0.517 
0.043 
-0.455 
3.474 
-0.182 
-4.447 
1.621 

0.075 
0.059 
0.009 
0.049 
3.900 
0.903 
2.031 
1.018 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.373 
0.840 
0.028* 
0.111 

-1.225 
0.493 
0.040 
-0.518 
23.070 
0.877 
-10.161 
10.269 

0.075 
0.060 
0.009 
0.053 
11.43 
1.660 
6.570 
4.760 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.043* 
0.597 
0.122 
0.031* 

Red 
deer Intercept p 

VS 
temp 
trail 
Intercept \ 
TRI 
dist houses 

-3.616 
0.556 
0.024 
-0.874 
-0.038 
0.097 
-1.752 

0.269 
0.205 
0.027 
0.319 
0.536 
0.520 
0.732 

<0.001* 
0.007* 
0.379 
<0.001* 
0.943 
0.853 
0.017* 

-3.639 
0.561 
0.024 
-0.881 
-1.121 
0.512 
-1.822 

0.271 
0.204 
0.027 
0.214 
2.077 
0.863 
0.791 

<0.001* 
0.006* 
0.377 
<0.001* 
0.589 
0.553 
0.021* 

-3.710 
0.657 
0.019 
-0.845 
25.565 
7.914 
-1.422 

0.257 
0.211 
0.027 
0.208 
12.21 
5.720 
2.580 

<0.001* 
0.002* 
0.475 
<0.001* 
0.036* 
0.167 
0.581 

Model AIC ' AIC 

M7 3796 0 
M6 3802 6 
M4 3807 11 
M5 3812 16 
M3 3813 17 
M1 3815 19 
M2 3820 24 
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Wolf Intercept p 
VS 
temp 
trail 
Intercept \ 
TRI 
avg people 

-3.874 
0.433 
-0.080 
0.438 
1.688 
0.675 
0.378 

0.318 
0.292 
0.043 
0.154 
0.953 
1.040 
1.066 

<0.001* 
0.138 
0.063 
0.004* 
0.077 
0.516 
0.723 

-3.828 
0.386 
-0.077 
0.414 
1.153 
1.628 
4.156 

0.322 
0.284 
0.043 
0.151 
3.000 
1.261 
3.776 

<0.001* 
0.175 
0.072 
0.006* 
0.701 
0.197 
0.271 

-3.683 
0.222 
-0.078 
0.424 
20.453 
13.144 
7.172 

0.293 
0.288 
0.043 
0.148 
10.790 
7.920 
3.320 

<0.001* 
0.441 
0.067 
0.004* 
0.058 
0.097 
0.031* 

Roe - 
Red Intercept \ 

forest 
dist houses 

   
1.746 
 
 

2.193 
 
 

0.426 
 
 

-16.113 
2.494 
-8.892 

8.560 
1.790 
4.230 

0.059 
0.164 
0.036* 

Roe - 
Wolf Intercept \ 

slope 
dist roads 

   
1.815 
 
 

4.071 
 
 

0.656 
 
 

-6.352 
0.901 
-4.107 

6.080 
5.170 
2.430 

0.296 
0.861 
0.091 

Red -
Wolf Intercept \ 

slope 
dist roads 

   
-0.532 
 
 

1.975 
 
 

0.788 
 
 

-12.530 
-14.994 
7.721 

7.190 
6.960 
2.730 

0.081 
0.031* 
0.005* 

 

 

Regarding marginal occupancy, distance from roads had a significant positive effect on roe 

deer independent occupancy (M3, z = 2.159, p = 0.031), while forest and slope did not show 

any significant effect. This result differs from M1 that did not report an effect of roads when 

roe deer were considered independent of relations with other species and M1 also reported 

a negative effect of slope (M1, z = -2.102, p = 0.036) that fades when interactions are present 

in M3. Red deer occupancy was not significantly influenced by any of the identified 

variables. Wolf occupancy was positively influenced by the average number of people per 

day (M3, z = 2.160, p = 0.031). 

In terms of co-occurrences (M3), roe deer and red deer were more likely to be found together 

as distance from houses decreased (z = -2.101, p = 0.036), with no significant effect of forest. 

The co-occurrence of roe deer and wolf was not significantly influenced by slope or distance 

from roads. However, wolf and red deer co-occurrence showed significant results for both 

the environmental and human-related variables identified. Specifically, slope had a negative 

influence on their co-occurrence (z = -2.154, p = 0.031) and distance from roads had a 

positive effect (z = 2.832, p = 0.005). 

Regarding the detection section of the best model of this part (M3), the visual clarity of the 

camera had a positive effect on detection for roe deer (z = 8.730, p < 0.001) and red deer (z 

= 3.107, p = 0.002), while it had no effect on wolf. Temperature had a positive effect on roe 

deer detection (z = 4.623, p < 0.001) but had no influence on red deer or wolf. Finally, animal 

trail influenced the detection probability of each species (Figure 9), with a negative influence 
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on roe deer (z = -9.232, p < 0.001) and red deer (z = -4.068, p < 0.001) and a positive 

influence on wolf (z = 2.865, p = 0.004). 

 

 

Figure 9. Detection probability of roe deer (left), red deer (central) and wolf (right) in relation to trails. Solid lines 

represent the mean posterior distribution and grey ribbons envelop 95% credible intervals. Roe deer and red deer were 

more likely detectable off-trail, while wolves show an opposite trend, being more likely detectable on trails. 

 

 

4.2.2 The impact of human presence 

All three models of the second set (M4, M5, M6) reported a lower AIC compared to the first 

set (M1, M2, M3), with ' AIC > 10 among the best models of the two sets. These values 

suggest that the latent presence/absence of humans is an important factor in determining the 

detectability of the species. The best model among the three, M6, found a significant positive 

influence of human presence on the detectability of roe deer (z = 3.637, p < 0.001). The total 

results are presented in Table 8. 
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Table 8. MSOMs results, with species detection probability modelled as a function of the latent presence/absence of 

humans, evaluating: independent occurrence of the three species (M4), constant pairwise dependence among species (M5) 

and pairwise dependence modelled with covariates (M6). Statistically significant results are highlighted with an asterisk 

(*) at P < 0.05. 

  M4 M5 M6 

Species Variable Estimate SE p-value Estimate SE p-value Estimate SE p-value 
Roe 
deer 

Intercept p 
VS 
temp 
trail 
human 
Intercept \ 
forest 
TRI 
dist roads 

-1.269 
0.493 
0.040 
-0.517 
0.592 
5.577 
0.061 
-4.198 
1.836 

0.076 
0.060 
0.009 
0.053 
0.163 
2.226 
0.825 
1.994 
1.077 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.012* 
0.941 
0.035* 
0.088 

-1.267 
0.493 
0.040 
-0.518 
0.593 
2.809 
-0.182 
-4.531 
1.599 

0.076 
0.060 
0.009 
0.053 
0.163 
4.004 
0.904 
2.032 
1.004 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.483 
0.840 
0.026* 
0.111 

-1.268 
0.493 
0.040 
-0.518 
0.593 
22.792 
0.882 
-10.002 
10.210 

0.076 
0.060 
0.009 
0.053 
0.163 
11.26 
1.680 
6.430 
4.720 

<0.001* 
<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.043* 
0.598 
0.120 
0.031* 

Red 
deer 

Intercept p 
VS 
temp 
trail 
human 
Intercept \ 
TRI 
dist houses 

-3.610 
0.570 
0.026 
-0.852 
-0.356 
-0.034 
0.089 
-1.732 

0.270 
0.207 
0.028 
0.215 
0.630 
0.534 
0.519 
0.727 

<0.001* 
0.006* 
0.343 
<0.001* 
0.572 
0.949 
0.863 
0.017* 

-3.634 
0.574 
0.026 
-0.872 
-0.331 
-0.981 
0.562 
-1.826 

0.271 
0.206 
0.028 
0.216 
0.630 
2.092 
0.848 
0.796 

<0.001* 
0.005* 
0.344 
<0.001* 
0.599 
0.639 
0.508 
0.021* 

-3.710 
0.655 
0.019 
-0.845 
 
25.428 
7.967 
-1.434 

0.257 
0.211 
0.027 
0.208 
 
12.12 
5.72 
2.57 

<0.001* 
0.002* 
0.475 
<0.001* 
 
0.036* 
0.164 
0.577 

Wolf Intercept p 
VS 
temp 
trail 
human 
Intercept \ 
TRI 
avg people 

-3.841 
0.351 
-0.079 
0.375 
0.368 
2.286 
1.437 
3.366 

0.313 
0.288 
0.043 
0.159 
0.485 
1.460 
0.939 
2.266 

<0.001* 
0.222 
0.064 
0.018* 
0.448 
0.117 
0.126 
0.137 

-3.892 
0.341 
-0.080 
0.374 
0.427 
1.179 
1.943 
4.979 

0.330 
0.286 
0.043 
0.160 
0.491 
3.039 
1.560 
4.220 

<0.001* 
0.233 
0.061 
0.019* 
0.384 
0.698 
0.213 
0.238 

-3.685 
0.221 
-0.078 
0.425 
 
20.241 
13.280 
7.185 

0.293 
0.288 
0.043 
0.148 
 
10.620 
7.900 
3.320 

<0.001* 
0.443 
0.067 
0.004* 
 
0.058 
0.092 
0.030* 

Roe - 
Red Intercept \ 

forest 
dist houses 

   
1.823 
 
 

2.218 
 
 

0.411 
 
 

-15.980 
2.457 
-8.829 

8.490 
1.770 
4.200 

0.060 
0.165 
0.035* 

Roe - 
Wolf Intercept \ 

slope 
dist roads 

   
2.613 
 
 

4.231 
 
 

0.537 
 
 

-6.155 
0.769 
-4.088 

5.910 
5.080 
2.410 

0.297 
0.880 
0.091 

Red -
Wolf Intercept \ 

slope 
dist roads 

   
-0.763 
 
 

1.887 
 
 

0.686 
 
 

-12.506 
-15.001 
7.695 

7.160 
6.940 
2.720 

0.081 
0.031* 
0.005* 

 

The three graphs presented below illustrate the relationship between the marginal occupancy 

probability of each species and a specific environmental or human-related variable that was 

regarded as important to describe their occupancy (roe deer-TRI: Figure 10, red deer-houses: 

Figure 11 and wolf-people: Figure 12).  
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Figure 10. Marginal occupancy probability of roe deer as a function of the terrain ruggedness index (TRI). Solid lines 

represent the mean posterior distribution and grey ribbons envelop 95% credible intervals. The graph shows how roe deer 

tend to occupy with maximum likelihood areas with a gentler terrain ruggedness, and, as this increases, it tends to be less 

likely for them to occupy the site.  

 

Figure 11. Marginal occupancy probability of red deer as a function of the distance from the closest human habitation. 

Solid lines represent the mean posterior distribution and grey ribbons envelop 95% credible intervals. Red deer are more 

likely to occupy sites which are closer to human habitations. 
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Figure 12. Marginal occupancy probability of wolf as a function of the average number of people per day. Solid lines 

represent the mean posterior distribution and grey ribbons envelop 95% credible intervals. Wolf occupancy shows a strong 

relation with the average daily number of people occupying a site, reporting a maximum likelihood occupancy even when 

low values of people passage are concerned. 

 

4.2.3 The effects of hunting 

M7, the model with the best overall AIC, reported a significant value of hunting days on roe 

deer detection highlighting a negative relation (z = -3.424, p < 0.001). Moreover, hunting 

days did not show a significant effect on both red deer and wolf detection probabilities. 

Forest had no significant effect on roe deer marginal occupancy and co-occurrence with red 

deer. Distance from houses reported a negative significant effect on ungulates co-occupancy 

probability (z = -2.107, p = 0.035). The total results are presented in Table 9. 

Table 9. MSOM results, with species detection probability modelled as a function of the latent presence/absence of humans 

and the hunting period, evaluating pairwise dependence among species modelled with covariates (M7). Statistically 

significant results are highlighted with an asterisk (*) at P < 0.05. 

  M7 

Species Variable Estimate SE p-value 

Roe 
deer 

Intercept p 
VS 
temp 
trail 
human 
hunting 
Intercept \ 
forest 
TRI 
dist roads 

-1.174 
0.503 
0.036 
-0.522 
0.585 
-0.428 
23.889 
0.976 
-10.452 
10.538 

0.080 
0.060 
0.009 
0.053 
0.164 
0.125 
11.67 
1.690 
6.590 
4.810 

<0.001 
<0.001* 
<0.001* 
<0.001* 
<0.001* 
<0.001* 
0.041* 
0.563 
0.113 
0.028* 
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Red 
deer 

Intercept p 
VS 
temp 
trail 
hunting 
Intercept \ 
TRI 
dist houses 

-3.692 
0.664 
0.018 
-0.843 
-0.095 
25.862 
7.490 
-1.525 

0.267 
0.212 
0.027 
0.208 
0.361 
12.33 
5.64 
2.59 

<0.001* 
0.002* 
0.500 
<0.001* 
0.792 
0.036* 
0.184 
0.555 

Wolf Intercept p 
VS 
temp 
trail 
hunting 
Intercept \ 
TRI 
avg people 

-3.671 
0.222 
-0.079 
0.424 
-0.053 
20.329 
12.926 
7.151 

0.306 
0.288 
0.043 
0.148 
0.459 
10.700 
7.860 
3.290 

<0.001* 
0.441 
0.064 
0.004* 
0.907 
0.057 
0.099 
0.029* 

Roe - 
Red Intercept \ 

forest 
dist houses 

-16.766 
2.596 
-8.920 

8.760 
1.810 
4.230 

0.056 
0.152 
0.035* 

Roe - 
Wolf Intercept \ 

slope 
dist roads 

-6.541 
0.909 
-4.175 

5.910 
5.080 
2.410 

0.297 
0.880 
0.091 

Red -
Wolf Intercept \ 

slope 
dist roads 

-12.233 
-14.769 
7.782 

7.090 
6.890 
2.740 

0.084 
0.032* 
0.004* 
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5. Discussion 

In recent years, camera traps have gained considerable recognition as an effective tool to 

monitor animal presence and offer a potential substitute for conventional, labour-intensive 

survey techniques (Gilbert et al., 2021b; Burton et al., 2015). According to the findings of 

Wearn and Glover-Kapfer (2019), comparative analyses of CTs with alternative survey 

methods generally support the view that CTs are a highly effective tool for conducting 

wildlife surveys. Specifically, their efficiency concerns the ability to detect a diverse range 

of species and record a large number of detections of targeted species.  

In light of the benefits afforded by CTs in monitoring wildlife populations, the current study 

was conducted to examine patterns of co-occurrence between ungulates and wolves in 

mountain valleys where they coexist with human populations. 

The camera trap network installed in the research area indicated the roe deer to be the most 

frequently detected species, accounting for approximately one-third of all recorded events 

and, especially, this species reported detections across more than 90% of the cameras. 

Notably, this species exhibited significantly higher detection numbers compared to the other 

three species, as humans were captured at almost half of the cameras (47%), while wolves 

and red deer were comparably detected on less than half of the cameras (40% and 37% 

respectively). 

The aim of this study did not involve determining species abundance, and therefore it is not 

possible to ascertain which species is more numerous. However, valuable insights can be 

gained by examining spatial utilisation and identifying factors that explain the high incidence 

of roe deer detections across the study area. 

The habitat within the study area is predominantly wooded due to the altitudinal range it 

covers, with limited expansion of areas with scarce vegetation or pastures. Roe deer has been 

identified as a wood-dependent species (Morellet et al., 2011; Lovari & San Josè, 1997; 

Hewison et al., 2001) and its small body size and shape (averaging 27.7 kg for males and 

26.7 kg for females; Loison, 1999) are suitable for moving through densely vegetated habitat 

conditions (Hansson, 1994). 

Deciduous woodland with thick underwood (typically found at low altitudes in our study 

area), especially if mixed and uneven in age, plays a pivotal role in providing roe deer with 

food and shelter (Ferretti et al., 2011; Pellerin et al., 2010; Lovari & San Josè, 1997). This 
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role increases in importance in fragmented habitats, such as those found at lower altitudes 

where forests are interrupted by cultivated fields, where woodland patches appear to be 

particularly relevant for roe deer (Morellet et al., 2011). Due to their highly selective 

herbivorous diet, roe deer prefer to occupy woodlands and scrublands where they can easily 

access high-quality food resources (Freschi et al., 2017; Torres et al., 2012; Jong et al., 1995). 

Thus, the area where the study was conducted represented an optimal environment for roe 

deer and justifies their widespread detections. Moreover, it is noteworthy that the study sites 

did not encompass higher altitude habitats where roe deer are less abundant due to 

unfavourable terrain conditions such as steepness, rocks, and food scarcity (Wevers et al., 

2021). In fact, roe deer exhibit considerable variation in their spatial behaviour depending 

on resource availability and snow cover, particularly in mountain areas (Lamberti et al., 

2004; Mysterud, 1997). 

However, the sampling period precluded access to these higher altitude areas where the 

expected detection of roe deer would have been lower, given the unsafe snow conditions 

during the winter season. 

Although no claims on consistency are possible, the other ungulate of interest, red deer, may 

be less abundant in our study area given that its detections were slightly more than one-tenth 

of those of roe deer. However, red deer are overall less widely distributed in the Western 

Alps, as opposed to roe deer that are present with substantial continuity of population 

(ISPRA, 2013). This is partly because red deer were reintroduced later compared to other 

ungulates in the same region, with the Italian and French Park Systems initiating the 

reintroduction of roe deer (along with chamois and wild boar) in the 1980s, while red deer 

were reintroduced towards the end of the 1990s (Marucco et al., 2008). However, red deer 

is recently expanding at the Alpine scale (ISPRA, 2013). 

The predator, wolf, was detected at 40% of the total sites, but the detections were 

considerably lower than those of roe deer (one twentieth) and red deer (less than half). 

Nonetheless, this is consistent with the wolf's lower density compared to ungulates, typical 

of large carnivores which move over large areas (Mech & Boitani, 2003), and its use of space 

as the species is known to travel in packs (Mech, 2000; Fuller & Keith, 1980; Peterson, 

1977) and a single pack's territory can occupy an entire valley. Therefore, wolves' home 

range is significantly larger than that of their prey (wolf: 100 - 600 km2, Ciucci et al., 1997, 

Mech & Boitani, 2003; red deer: 1.13 - 3.86 km2, Georgii & Schroder, 1983; roe deer: 0.13 
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- 0.44 km2, Lovari et al., 2017). Currently, the wolf population in the study area is reported 

to be stable (Avanzinelli et al., 2022). 

 

5.1 Influences of detection probability 

One important aspect of the occupancy models used in this study is their ability to include 

the estimated detection probability, which takes into account the unique conditions of each 

site or survey (MacKenzie et al., 2002). This is essential to ensure that the results are not 

biased by imperfect detection, and allows for a more accurate assessment of the presence or 

absence of different species in the study area (Bailey et al., 2014). 

Temperature, which is known to impact camera functioning (Meek et al., 2014), was found 

to be an important factor driving roe deer detectability but not those of other species, such 

as red deer. The sensitivity of the passive infra-red sensors of the cameras is affected by 

weather, particularly extreme heat and cold conditions. The reliability of CTs tends to 

decrease as the temperature difference between the moving animal and ambient background 

decreases, since the sensors function by detecting a change of temperature between the 

background and a passing object (Meek et al., 2012). Therefore, the difference in 

detectability between the two ungulates can be explained by the remarkable difference in 

body size (red deer average weight ranges from 107.5 kg for females to 160.0 kg for males 

and roe deer ranges from females 26.7 kg to males 27.7 kg; Loison et al., 1999). Therefore, 

red deer are more likely to be detected even in situations where camera performance is lower, 

because of the greater change between background temperature and the passing animal, due 

to body size. 

To improve estimates of detection, a visual clarity index was calculated for each camera, 

which provided a measure of the visibility of the camera's field of view. This index was 

found to be relevant for roe deer and red deer, but not for wolf detectability, which appeared 

to be unaffected by the clarity of the camera view. Wolves may be less likely to be obstructed 

by vegetation or other obstacles due to their tendency to move along linear features such as 

hiking trails (Whittington et al., 2005; Thurber et al., 1994), as also confirmed by the results 

presented in the following paragraph, while ungulates tend to occupy the underwood in 

search of food and cover (Freschi et al., 2017; Jong et al., 1995). 
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Finally, another interesting value for detectability regards the type of point in which the 

camera was positioned. CTs placed on trails were more likely to detect wolves but less likely 

to detect ungulates, which were, conversely, more likely to be detected at off-trail cameras. 

This finding is consistent with current knowledge on wolves moving strategies. As already 

mentioned, many studies (Dickie et al., 2017; Callaghan, 2002; James & Stuart-Smith, 2000) 

report that wolves use linear features as travel routes, such as hiking trails, which offer 

convenient travel itineraries across the territory (Whittington et al., 2005). 

This result could explain the positive relationship emerged between wolf occupancy 

probability and human passage at a given site. In fact, the relationship is due to wolves’ 

tendency to utilize trails as their travel routes, which, given the study area, coincides with 

the patterns of human movement along these same routes. Hence, this preference for the 

same type of passage has to be attributed to a shared preference for trail-based movement, 

which is particularly relevant in this mountainous area with a vast network of hiking trails, 

and not to a surrounding high-quality habitat for wolves (Whittington et al., 2005). 

However, the current study did not explore the hypothesis of temporal segregation, as 

temporal patterns were not investigated. Previous studies have examined the temporal 

patterns of wolves, revealing that the species is predominantly active at night, while humans 

tend to be active during the day, enabling wolves to utilize areas that are heavily used by 

humans, trails included, at different times (Petridou et al., 2023; Kusak et al., 2005; Ciucci 

et al., 1997). 

 

5.2 Species interactions 

Both the first and second parts of the modelling analysis demonstrated that species 

interactions improved model performance beyond what could be explained by single species 

modelling alone. This supports the expectation that interactions among species play a crucial 

role in shaping habitat utilisation, outweighing the impact of individual species’ effects. 

While single species models showed some influence on the marginal probability of each 

species occupying a site, they did not fully capture the complex ways in which species 

interact with each other. The combined effect of these interactions was found to significantly 

affect model outcomes. 
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Rota et al. (2016) asserted that species occurrence in a given area is often determined not 

only by biotic and abiotic factors, but also by interactions with other species. This highlights 

the significance of using a multi-species model, which enables simultaneous analysis of 

detection/non-detection data for multiple species and can identify evidence of species 

interactions across different environmental conditions. 

The ability to model the probability of co-occurrence between two species as a function of 

covariates has provided valuable insights into the factors driving marginal occupancy 

probabilities that might have otherwise been overlooked. This is particularly evident in the 

case of roe deer occupancy. When modelled independently of interactions, roe deer appear 

to be primarily influenced by TRI, as previously suggested by other studies that have 

reported a positive association with gentle slopes (Wevers et al., 2021) and avoidance of 

rugged terrain (Lone et al., 2014). This could reflect a movement strategy aimed at 

maximizing energy efficiency (Petridou et al., 2023). Nevertheless, when interactions are 

taken into account in the analysis, the influence of slope on roe deer occupancy weakens, 

and distance to roads emerges as the most influential variable determining roe deer marginal 

occupancy. Specifically, occupancy increases with greater distance from roads. This finding 

is consistent with previous studies that have reported roe deer avoidance of roads across 

various landscape contexts (Coulon et al., 2008). 

Interestingly, when considered individually, roe deer tend to be more likely found distant 

from roads. However, when examining the relationship between red deer and roe deer, the 

two ungulates were more likely to co-occur as the distance from houses decreased. One 

possible explanation for this pattern is that human settlements can create edges or boundaries 

in the landscape, which may offer a more suitable habitat for both species (Etter et al., 2002, 

Porter et al., 2004). For instance, houses may create areas with greater vegetation or access 

to water, which can attract ungulates. Additionally, the disturbances caused by human 

activity may create openings in the forest canopy that trigger a transition to younger and 

smaller plants (McDowell et al., 2020), which can provide browsing and foraging 

opportunities. This aligns with the findings of Bonnot et al. (2013), which suggest that the 

effects of infrastructures on roe deer occupancy can be influenced by the immediate 

environment, as roe deer can tolerate high proximity to settlements by staying within 

protective forested habitats during the day.  

Since the effect of roads on roe deer emerged when interactions were added to the model, it 

is possible that also wolf incoming in the scene plays a role in shaping ungulates spatial use. 
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In particular, a relevant hypothesis is that concerning the landscape of fear. This definition 

refers to the spatial and temporal variation in the risk of predation that prey experience in a 

given environment (Laundré et al., 2001). By modifying their responses to these risk factors, 

animals can potentially reduce their vulnerability to predation, as they may alter their 

behaviour in response to the perceived risk, avoiding areas where predators are likely to be 

present even if those areas provide abundant resources or a suitable habitat (Gaynor et al., 

2019; Laundré et al., 2010).  

However, the co-occurrence of roe deer and wolves could not be explained by any of the 

chosen variables, and similarly, results on roe deer marginal occupancy did not allow for an 

explanation of effects ascribable to wolf presence, and therefore, the insights into the 

landscape of fear hypothesis cannot be confirmed for roe deer. This could be due to the vast 

detection of roe deer through the study area, which impede to find variables that could fully 

explain this complex situation. In addition, a recent study by Palmer et al. (2022) identified 

time as a crucial dimension in landscapes of fear, since risk varies both in space and time 

but static spatial models implicitly assume that risk is constant and this study did not include 

temporal variations. 

On the other hand, the co-occurrence of red deer and wolves increased as the distance from 

roads increased. In addition, they tended to be detected together more frequently in areas 

with gentler slopes, suggesting a preference for such terrain for more efficient movements. 

Although co-occupancy effects were present, individual red deer occupancy did not appear 

to change in relation to wolf presence. In this case, as opposed to roe deer, the reason could 

lay in the fact that red deer are not the primary prey used by wolves in the region of interest 

(Regine, 2008), so they may be less impacted by the predator's attacks. In addition, the study 

period did not coincide with red deer reproductive season, which may have affected the 

results, since fawns may become a favourable prey (Torretta et al., 2017; Smietana & 

Klimek, 1993). 

 

5.3 The impact of human presence 

The second major hypothesis concerned human disturbance. In fact, in some areas, human 

activity is reported to affect herbivores more than habitat or natural predators (Bonnot et al., 

2020; Ciuti et al., 2012). 
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The study aimed to investigate the role of human presence in influencing species 

detectability. All three models considering human disturbance yielded better results than the 

first set, indicating that the latent presence or absence of humans is a crucial factor in 

determining species detectability. However, contrary to expectations, only roe deer exhibited 

a significantly positive effect and other variables did not change their effects upon the 

introduction of humans. A possible explanation of the positive outcome is that hikers 

(intended as general people variably occupying the mountains) may enhance roe deer 

detectability through their activity and noise, as they could disturb the animals, causing them 

to flee or move more than they usually do, and eventually making them more easily 

detectable. 

Roe deer are particularly sensitive to human disturbance, such as human presence, vehicles, 

dogs, and livestock and often avoid sources of disturbance such as roads (as also confirmed 

in this study), houses, agricultural land and recreational activities (Petridou et al., 2023; 

Bonnot et al., 2013). On the other hand, red deer and wolves may not have been affected by 

human disturbance due to their more crepuscular/nocturnal temporal habits (Kusak et al., 

2005; Carranza et al., 1991), conducting to a limited temporal overlap with hikers in respect 

to roe deer (Oberosler et al., 2017). 

 

5.4 The effects of hunting 

In human-dominated landscapes, habitat fragmentation leads to greater proximity and 

accessibility of humans to natural areas, resulting in increased conflicts between humans and 

wildlife (Bonnot et al., 2013). The presence of wolves in the study area poses a challenge 

for predator conservation, as this species has been generally known to generate conflicts with 

hunters who perceive them as competitors (Dressel et al., 2015). The negative perception of 

wolves by hunters reflects a competitive situation, where wolves are seen as a serious threat 

to hunting and hunting dogs (Bisi et al., 2010).  

Out of the three species examined, roe deer is the only one legally hunted in the area. 

Previous studies have reported that hunting has a significant impact on this ungulate. 

Benhaïem et al. (2008) demonstrated that the selection of feeding sites was affected, as roe 

deer no longer based their choices solely on food availability but also depended on risk 

perception. In addition, Bonnot et al. (2013) found that vigilance levels increased during the 

hunting season. 
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The investigation into the effects of hunting in this study area produced interesting findings. 

Adding hunting days as a variable revealed that the likelihood of capturing roe deer was 

significantly lower during the hunting season. However, the presence of hunting did not 

affect either red deer or wolf. This can be attributed to the fact that roe deer are the only 

game species among the three and therefore are more sensitive to hunting periods. Moreover, 

the lower detection probability of roe deer during the hunting season can be attributed to 

their reduced movement, since moving across patches in fragmented habitats is highly risky 

(Cote et al., 2017). As mentioned, during hunting season, roe deer have to make a trade-off 

between security and other needs, particularly food resources. This constraint on their 

movement during the day increases the need to explore more during the night to locate food 

resources (Martin et al., 2018). For this reason, investigating temporal patterns would be 

beneficial in gaining a better understanding of how roe deer cope with hunters. 

It was expected that a different effect of environmental variables would be found in 

comparison to other models, as previous research has demonstrated an impact. For example, 

Bonnot et al. (2013) found that roe deer respond to the hunting threat by decreasing their 

daytime use of high-crops, which offer both shelter and food resources but are often targeted 

by hunters with dogs during the open season. Consequently, roe deer adjust their habitat 

usage by concentrating on open forage-rich areas at night. Similarly, Benhaiem et al. (2008) 

observed that hunting risk influences vigilance behaviour, resulting in higher overall levels 

during the hunting season, particularly in the more open areas of the landscape. However, 

these effects were not detected by examining the significance of the variables in this study 

This could be due to the major fact that both of the aforementioned studies included time in 

their analysis, allowing for a distinction between habitat usage during the day (when hunters 

are active) and at night (when roe deer can move without the risk of being shot). 

 

 

 

 



 54  

6. Conclusion  

This study aimed to investigate the co-occurrence patterns of Alpine species in a mountain 

valley environment in the Western Italian Alps, where a complex interplay of competition, 

predation, and human activities is present. Camera traps were employed for data collection, 

which is an increasingly effective tool for monitoring species presence, given the parallel 

development of statistical methods for managing this type of data. 

The results suggest that the use of habitat by wildlife should not only be examined in relation 

to site-specific variables (e.g., environmental variables such as terrain roughness or forests, 

or human disturbance variables such as houses or roads), because species are in close 

interaction with each other, and this interaction cannot be overlooked, given its primary role 

in modifying habitat use. Additionally, humans (e.g., residents, tourists, hikers, cyclists) 

resulted to exert a significant influence on shaping the community, as the sharing of habitat 

makes them fully involved in the predator-prey interaction mechanisms. Finally, the most 

sensitive species to hunting risk, the roe deer, resulted to be impacted in its detectability by 

the hunting season, making this additional anthropogenic disturbance fundamental in 

describing species-environment and species-specific interactions. 

An interesting element of the study concerned the detection of roe deer in almost all of the 

sampling sites. The occupancy of roe deer was found to be widespread throughout the valley, 

hence, despite the relevant anthropogenic impact, this does not prevent a good expansion of 

the species, although quantitative studies on abundance are needed. The habitat type of the 

study area is suitable for roe deer (deciduous forests with undergrowth and abundant food 

resources), which undoubtedly contributes to their ability to withstand competitive 

interaction with red deer, predation by wolves and human disturbance. Moreover, the fact 

that the study area has a relatively small human population, limited to the valley floor, leaves 

the higher parts of the mountains and the forests free from continuous intense disturbance, 

as could be caused by a city or a larger urban area. 

In conclusion, the investigated area exhibits a complex ecological system, wherein ungulates 

compete for resources, face predation from wolves, and share their habitat with humans 

engaging in diverse activities. It is evident that the study of such a community of species, 

which is typical in the Western Alps, cannot disregard the inclusion of the interactions that 

occur between prey, predators and human activities, being those fundamental in shaping 

species habitat use. This study gives important insights of such interactions, particularly 
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relevant for guiding management decision and for indicating good practices to minimise 

human impacts for developing sustainable approaches in complex predator-prey systems. 
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di coesistenza stabile tra lupo ed attività economiche - Stato, distribuzione, e dieta della popolazione di lupo in 

regione Piemonte. Report 2005 - Progetto Lupo Regione Piemonte, Torino. 

Marucco, F., Pletscher, D. H., & Boitani, L. 2008. Accuracy of scat sampling for carnivore diet analysis: wolves 

in the Alps as a case study. Journal of Mammalogy, 89(3), 665-673. DOI: 10.1644/07-MAMM-A-005R3.1 

Marucco F., Avanzinelli, E., Boiani, M.V., Menzano, A., Perrone, S., Dupont, P., Bischof,R.,  Milleret, C., von 

Hardenberg, A., Pilgrim, K., Friard, O., Bisi, F., Bombieri, G., Calderola, S., Carolfi, S., Chioso, C., Fattori, 

U., Ferrari, P., Pedrotti, L., Righetti, D., Tomasella, M., Truc, F., Aragno, P., La Morgia, V., & Genovesi, P. 

2022. La popolazione di lupo nelle regioni alpine Italiane 2020-2021. Relazione tecnica dell’Attività di 
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